Swashplate Linear Actuator Control With Servo Cylinders

In the photo below are Ultra Motion’s A2 Servo Cylinders being shown off in a swashplate control application for Liyang East Wing’s twin-rotor UAV helicopter. The A2 Servo Cylinder’s high dynamic performance, reliable operation in harsh conditions, and Phase Index absolute position feedback makes it the perfect solution for unmanned vehicle control applications. A variety of control interfaces including RS-422 serial and RC-PWM greatly simplifies interfacing the Servo Cylinder with COTS autopilots or custom avionics. 

For more information on our Servo Cylinder offerings click here, or configure your model here.

Introducing New R-Series Spaceflight Actuators

Designed for the demanding shock and vibration environments of the new-space industry, the R-Series actuators from Ultra Motion leverage years of heritage in high reliability actuator design for spaceflight applications. Using Ultra Motion’s flight proven, patented Phase Index absolute position sensor, the R-Series provides high resolution absolute position feedback in the most extreme environments and with uncontested mass, economy, and power density. The R-Series actuators are the perfect solution for high reliability new-space and aerospace applications such as thrust vector control, throttle control, and fin control.

  • Dual Redundant Absolute Position Feedback
  • Forces up to 1200 lbf peak
  • Speeds up to 2.5 in/s
  • Stroke up to 3.5 inches
  • Mass < 3.0 lbm

The R-Series is a modular platform allowing for application specific requirements to easily be met, such as Mighty Mouse connectors, specific mounting arrangements, variations in force/speed, etc. Contact Ultra Motion engineering for more details.

Throttle Valve Actuators

Using a triple redundant version of Ultra Motion’s Phase Index absolute position sensing technology, these actuators provide high accuracy, high bandwidth control over propellant flow in a manned spaceflight application. In order to comply with NASA-STD-5017 requirements, these actuators were designed to provide utmost reliability across extreme environmental conditions (shock, vibe, saltwater submergence, and a wide temperature range)